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Abstract

Recently the Multi-Level algorithm was introduced as a general purpose

solver for the solution of steady state Markov chains. In this paper we con-

sider the performance of the Multi-Level algorithm for solving Nearly Com-

pletely Decomposable (NCD) Markov chains, for which special-purpose iter-

ative aggregation/disaggregation algorithms such as the Koury-McAllister-

Stewart (KMS) method have been developed that can exploit the decompos-

abihty of the the Markov chain. We present experimental results indicating

that the general-purpose Multi-Level algorithm is competitive, and can be

significantly faster than the special-purpose KMS algorithm when Gauss-

Seidel and Gaussian Ehmination are used for solving the individual blocks.

*This research was supported by the National Aeronautics and Space Administration under NASA contract NAS1-

19480 while the second author was in residence at the Institute for Computer Apphcations in Science and Engineering,
NASA Langley Research Center.
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1 Introduction

Recently the Multi-Level (ML) algorithm was introduced as a fast solver for general steady-state Markov

chains [2]. The algorithm has been shown to be faster, often one or two orders of magnitude faster

relative to the Gauss-Seidel and optimized SOR algorithms for a number of different Markov chains.

The study showed the potential of the algorithm, but in the light of the small number of test problems

represented only a first step in determining whether the excellent performance can be realized for

all Markov chains. In this work we investigate the utility of the ML algorithm for solving Nearly

Completely Decomposable (NCD) Markov chains. For this class of Markov chains special-purpose

iterative aggregation/disaggregation (IAD) algorithms [3, 11] have been shown to perform well. Thus,

demonstration of the utility of an algorithm for solving NCD chains necessitates comparison with one of

these lAD schemes. We include the Koury-McAllister-Stewart (KMS) [3] algorithm as a representative

example. We also include the Gauss-Seidel (GS) method for purposes of comparison.

In our experiments we structure the Markov chains in NCD "normal", i.e. almost block-diagonal

form. Hence we give an advantage to KMS, since in practice the algorithm would require computation

time for the restructuring of the Markov chain. However, Stewart and Wu have shown that this re-

structuring time often is not significant [9]. Like Stewart and Wu, we use Gaussian elimination to solve

blocks of size less than 100 states.

One difference between our experiments and those of Stewart and Wu is that they use SOR as well

as GS to solve blocks. Note that we have found using SOR with a well chosen relaxation parameter for

solving the blocks can decrease the computation time of the KMS algorithm by a factor of 3 or more for

many of the chains we consider, but determining the correct parameter is not a trivial task. Another

difference is that when Stewart and Wu use SOR or GS to solve a block, they perform a fixed number

of iterations on the block whereas we perform iterations until the solution does not improve by more

than E in any state, for some c.

The rest of the paper is organized as follows. In section 2 we provide some background material on

NCD chains. In sections 3 and 4 we briefly describe the ML and KMS algorithms. Section 5 contains

our experimental results. The final section contains our conclusions.

2 Nearly Completely Decomposable Markov Chains

In this section we give a brief informal description of NCD chains and give two examples that we use

in our experimental studies. The seminal work on NCD systems was conducted by Simon and Ando

[6], and applied to Markov chains by Courtois [1]. For a more detailed treatment we refer the reader to

Stewart [9, 10]. An NCD Markov chain with B blocks can be ordered so that the generator matrix can

( Qll Q12 ..- QIB )

Q21 Q22 ... Q2s

Q --- , (1)

Qsl Qs2 -.-QBB

be written in block form as:



1 1 0.001 1 1

2 2 0.002 2 2

Figure 1: Sample Nearly Completely Decomposable Birth-Death Markov Chain

where the elements of the off-diagonal blocks Qij, i _ j are small compared to the elements of the

diagonal blocks Qii. The larger the elements of the off-diagonal blocks, the less NCD the chain becomes.

Note that for a completely decomposable chain the off-diagonal blocks would contain only zeros and

the Markov chain degenerates into a set of independent problems. Any solu. tion algorithm that makes

use of the block structure will have to invest some pre-processing effort into permuting the matrix into

the above ahnost block-diagonal form.

In this paper we consider two different example NCD Markov chain structures.

2.1 Example 1

The first example is a modified birth-death chain that is subdivided into B blocks of size N. The birth

rate between blocks is _f× the birth rate within each block, and the death rate between blocks is _f×

the internal death rate. The parameter _f thus controls the degree of decomposability of the chain. In

figure 1 we provide an example with 2 blocks, three states per block, a birth (death). rate of 1 (2), and

= 0.001. In our experiments we will vary both the number of blocks for a given chain size and the

inter-block coupling strength (_.

2.2 Example 2

The second example NCD Markov chain structure, shown in figure 2, is the interactive computer

system model used by Stewart [4, 8, 9]. In this model a CPU processes jobs arriving from a set of

terminals, which may subsequently require service from a filing device (FD) or secondary memory

(SM). Let L, equal the length at queue "x". Let r/equal the number of jobs in the system, giving

7l = LcPu q- LED + LSM. We assume there is one job per terminal, and that the terminals are modeled

as an infinite server. The Markov chain is decomposed into B + 1 blocks, where B is the number of

terminals and block i is the set of all states which have i jobs in the system. These blocks form an NCD

chain when the terminal service rate and the probability of returning to the terminals after visiting the

CPU are small.

m

We assume the same parameter values as are used in [9]: the rate leaving the terminals is 10,000,

the rate leaving the SM device is 0.2, the rate leaving the FD is 3-16,the rate from the CPU to the FD is

0.05, the rate from the CPU to the terminals is 0.002, and the rate from the CPU to the SM device is

100(1-_2s)l"s. This last rate is meant to model the rate at which page faults occurs and increases with the

number of currently executing jobs. For a more detailed description of the model we refer the reader to



[9,4].

O J
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SM
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Figure 2: Multiprogrammed Queueing Network Model

3 Multi-Level Algorithm

In this section we briefly review the recently introduced multi-level algorithm, details of which can be

found in [2]. Consider a Markov chain consisting of n states So... s,_-l. Denote the unknown vector by

p, where p_ is the probability of finding the Markov chain in state si.

We then have to solve the system of equations

with the additional condition

Pp = 0 (2)

i=n-1

Pi = 1 (3)
i=O

This equation is usually written as _'Q = 0 for _r = pT and Q = pT, the infinitesimal generator matrix.

A coarser representation of the Markov chain described by matrix P may be obtained by aggre-

gation. This means creating a new Markov chain described by a matrix Q with the vector of state

probabilities q, each of whose N states So... SN-] is derived from a number of states of the original

system.

In the following we will use the terms fine level and coarse level to refer to Markov chains where

the latter is obtained by aggregation from the former. The relation sk E Si signifies that the fine level

state sk is mapped by the aggregation operation to the coarse level state Si.

The matrix Q of the aggregated system is chosen as follows :

E pk E
•k_s, 8,es, (4)

= E pk
skE&



procedure ml(1)

if (l= O)

solve /_;h= 0

else

_ = _s _(._t)

=l(l- 1)

PT-, = _t-,/_l-,
p7 = /,-,,_(pT-,)

return

Figure 3: Multi-Level Algorithm

This is the well-known aggregation matrix. Note that the matrix Q is a function not only of the fine

level matrix P, but also of the fine level solution vector p.

This yields the aggregated equations in the unknown q:

Qq = 0
N-l

_'_ qi= l
i=O

It can then be shown that

q,= _ pk , (s)
ske8,

i.e. the solution q of the aggregated system truly represents a coarser version of the solution p of the

original problem. The probability of being in state qi is the sum of the probabilities of being in any of

its constituent fine-level states. We use the aggregation equation as a basis for the multi-level method,

whereby we approximate the exact solution values pk in (4) above by values from the current iterate.

The ML algorithm can be viewed as a recursive aggregation/disaggregation algorithm. We adopt

the following abbreviations for vectors a, b, c E JRm:

a=b,c =_ a_=bi*c_, l<i<m

a= b/c =_ a_ = b_/c_, 1 < i < m

The two-level version of the ML iteration is given by the following sequence of steps.

• Perform Gauss-Seidel relaxation on current iterate p(i), yielding i5

= GS(p(i)) (6)

• Restrict current solution _5to coarse-level vector

4=R(_) = _= _k (7)
sk ESI



• Compute coarse matrix (_

• Solve coarse equation for q

* Compute coarse level correction q*

• Compute fine level correction p*

E kE

(2j_ = skeSi sleS_

N-1

P/k

Q(_= 0, _--_ _ = 1
i---0

q* = t_/_

(8)

(9)

(lo)

p*=l(q*) - p*k=q*

• Apply fine level correction to obtain new iterate p(i+l)

pO+,) -

(11)

(12)

In this two-level form the method is similar to well-known iterative aggregation/disaggregation

(IAD) methods such as those of Uoury, McAllister and Stewart [3] and of Takahashi [11]. The multi-

level algorithm is obtained by recursive application of the two-level algorithm to obtain a solution to

the aggregated equation (9) and is described in algorithmic form in figure 3. We use the subscript 1

to denote level of representation (l = lmax finest level, i.e. the original Markov chain, l = 0 coarsest

level). The coarse level l- 1 and fine level l between which the operators I and R map are identified by

appropriate indices. Note that, because of the recursive nature of the algorithm, the unknowns q*, t] and

t_ are represented by the variables PI*-I, Pt-1 and i5l-1, respectively. We allow in general the possibility

of applying G$ v times at each level with v > 1, denoted by G$ _.

The performance of the policy can be greatly influenced by the aggregation strategy used. The

aggregation strategy used for all experiments in this paper attempts to aggregate pairs (or triples) of

fine level states that are strongly coupled. Let q2 be the maximum number of fine level states allowed

to be aggregated into a single coarse level state. For all experiments in this paper qJ is set to three.

Let a be the aggregation rate differential, used for determining whether two states are coupled strongly

enough to aggregate them together. For all experiments in this paper we set a = 0.5. We loop though

all states of a given level and for each state si that has not yet been assigned to an aggregated state:

°

2.

.

Let absolutemaz = the maximum of {Pij, Psi} Yj.

Let availablem_ = the maximum of {P_j, Pji} Yj such that sj has not yet been assigned to an

aggregated state whose number of constituent fine level states is equal to _.

If availablem_:_ > (a, absolutem_::), then aggregate si with sj. Note, it is possible that sj is

already in an aggregate of size • - 1 in which case si is added to the aggregate to make it of size



4. If availablem_x < (_ * absolute,_x), then map sl to a new coarse level state by itself. Another

state visited latter in the £ggregation step may be aggregated with this state, if not the coarse

state remains composed of only this one fine level state.

The goal of this aggregation method is to avoid coupling weakly connected states when in the

presence of a strong connection to some other state, and also to avoid the creation of large aggregates.

The parameter a ensures that states are strongly connected enough before aggregating them together,

and the use of singletons avoids creation of large aggregates. This aggregation strategy takes strongly

differing rates into account and therefore will aggregate within blocks when the chain is NCD. As a result,

strongly coupled states are aggregated together and at some intermediate level the ML aggregation will

likely correspond to the KMS coarse level.

4 KMS Algorithm

Iterative Aggregation/Disaggregation (IAD) methods are a well-known class of algorithms for the steady

state solution of Markov chains and which bear a close relationship to the ML method presented here.

IAD methods are reviewed in [7]. The generic IAD method is that of Koury, McAllister and Stewart

(KMS) [3]. Using the notation of section 3, the KMS method is defined as follows:

1. Construct coarse level matrix Q using (8)

2. Solve coarse system (9).

3. Perform the correction (11), (12).

4. For each coarse level state Si solve the set of equations connecting all fine level states sk aggregated

to it (sk E Si).

5. If not converged goto 1

Step (4) is a Block Gauss-Seidel step on the finer level, where the blocks are defined by the aggregated

system corresponding to (1).

We now see that the KMS algorithm is a special case of ML, obtained by the following choices:

1. Use of only two levels of representation of the system, rather than recursively coarsened problems.

2. The number of fine unknowns aggregated into a single state is large, whereas for ML the number

of unknowns is between one and three, usually two or three.

3. Use of Block Gauss-Seidel on the finer level, as opposed to a pointwise Gauss-Seidel scheme.

One open question regarding the KMS algorithm is how much work per global iteration should be

done solving each block on the finer level. In Stewart [10, 9] SOR was applied for a fixed number of

iterations. We chose instead to solve with GS until the solution does not improve by more than e in

any state, for e values of le-06, le-09, and le-ll.



Gaussian elimination for the solution of the blocks is generally faster than solution by Gauss-Seidel

iteration when implemented in a way that preserves the sparsity of the matrices involved and these are

of suitably small dimension. For larger blocks both the memory and cpu requirements force the switch

to the iterative scheme. On the other hand, when the chain is NCD the KMS algorithm usually obtains

a fairly accurate solution after the first iteration, meaning that Gauss-Seidel already has a good initial

guess and requires only a few iterations to convergence. In this case iteration is to be preferred over

elimination. As done in [9], we use Gaussian elimination for all blocks comprised of fewer than 100

states.

IAD methods such as this suffer the drawback that they are only applicable to NCD Markov chains.

The aggregation is then defined by assigning one coarse unknown to each block. The number of fine

unknowns that are aggregated to a single coarse state may be quite large.

5 Experimental Results

In this section we describe the experiments and the results obtained. In all figures, the lines are plotted

in the same order they appear in the legends. We first present results from the generalized birth death

structure described in section 2.1. This trivial example allows us to investigate how changing the number

of states per block and decreasing the decomposability affect the relative performance of the policies.

Note, in practice this chain would be solved analytically, we only solve it numerically to explore the

relative solution speed of the algorithms.

For both experiments we fix the number of states in the chain at 1000, and set the birth (death)

rate to be 50000 (40000). We choose large rates to prevent numerical underfiow. In all figures we include

data points for five algorithms: GS, ML, KMS-06, KMS-09, and KMS-11, where KMS-xx denotes the

KMS algorithm assuming that block GS is applied on the blocks until the solution does not improve

by more than le-xx in any state. We also ran the experiments using KMS-04, not shown, and the

performance is very close to that of KMS-06.

In the first experiment we determine what effect the number of states per block has on the perfor-

mance of the policies while keeping the problem size fixed. This is done by setting _ = 0.01 and varying

the number of blocks since a small number of blocks results in a large number of states per block. For

this experiment we do not use Gaussian elimination for solving any of the blocks in KMS since this

would prohibit us from attributing results to a single factor. If we used Gaussian elimination for small

blocks the algorithm would change as the number of blocks changes, thus making the results difficult

to interpret.

In figure 4 we plot the results. We include plots for the number of iterations, the overall floating

point operation count in millions of floating point operations (MFLOPS), the time in seconds, and

the ratio of flops relative to the ML algorithm. The time metric was obtained using the Unix times

system call. The time metric results in similar comparisons, but is dependent on the efficiency of the

implementation of the algorithms. In addition, we have found the timings to fluctuate do to interference

form other jobs on the workstation, hence we focus on flops and iterations in subsequent experiments.

First consider the number of iterations needed. The behavior of KMS-I'I is exactly what we would



expect. KMS-11 requires a very small number of global iterations since the chain is strongly NCD and

the individual blocks are solved to a high level of accuracy. The number of global iterations increases as

the required accuracy of solving the individual blocks decreases. Note that the ML algorithm requires

more iterations than KMS-11 but less than the other algorithms, and that GS requires a large number

of iterations.

Now consider the flops metric. The ML algorithm requires significantly less computation than any

of the other algorithms and the ordering of the KMS policies is reversed when considering flops instead of

iterations. The KMS-11 algorithm may require fewer global iterations than the other KMS algorithms,

but each iteration requires enough additional work to outweigh the reduced number of iterations. Note

that Stewart [9, 10] pointed out that increasing the number of iterations when solving each block may

or may not decrease overall solution time. In our experiments we find as a general rule that decreasing

the accuracy required of each individual block solve decreases the overall solution time.

The performance of the KMS algorithm decreases as the block size increases because both block

solvers considered (GS and Gaussian elimination) have a superlinear increase in operation counts in the

number of unknowns. The saving per block outweighs the additional number of blocks now needed to

be solved. The blocks used in this experiment were only of very modest size, _< 500. As the blocks

increase in size ML becomes faster with respect to GS or Gaussian elimination, thus the superiority of

ML will increase with the system size.

We now explore the sensitivity of the algorithms to the degree of decomposability of the Markov

chain by varying the parameter _f. Our implementation of the KMS algorithm always assumes the same

block structure regardless of _f, hence by increasing parameter _f we can decrease the decomposability.

We plot the results in figure 5. The performance of the KMS-11 and KMS-9 algorithms quickly degrades

as _ increases. The is not unexpected since the policy is designed to work on an NCD chain. The fact

that it converges for high values of $ is encouraging. Note that KMS-6 is less sensitive to _. The

ML algorithm is almost completely insensitive to _. This too is not particularly surprising since we

prevLously showed the excellent performance of the ML algorithm for non-NCD chains [2].

We now consider the less trivial Markov chain of the queueing network model of the multipro-

grammed computer system described in section 2.2. For these experiments we assume all KMS algo-

rithms use Gaussian elimination for solving blocks with fewer than 100 states. The number of states

per block is presented in table 1. For a population of 20 there are 21 blocks, for a population of 50 jobs
there are 51 blocks.

In figure 6 we plot the results of the algorithms solving this model for a population of 20 when the

rate from the cpu to the terminal is varied from 0.001 to 0.02. Note that a value of 0.002 was used in the

experiments found in [9]. Our original intention in varying the rate from the cpu to the terminals was

to determine how a change in the decomposability of the Markov chain affects the relative performance

of the algorithms. The general trend noted from the number of flops is that as the rate is increased,

hence the decomposability decreased, the KMS algorithms requires significantly less computation. This

is counter-intuitive. The reason can be found in the solution values of the Markov chains. In figure 7

we plot the probability mass functions for the solution on a block basis. These plots were obtained by

summing the probability mass over all states within each of the 21 blocks. As the rate of going from

the cpu to the terminals is increased, probability mass shifts from the blocks with a large number of

8



1 3 6 10 15 21 28 36 45 55 66

78 91 105 120 136 153 171 190 210 231 253

276 300 325 351 378 406 435 465 496 528 561

595 630 666 703 741 780 820 861 903 946 990

1035 1081 1128 1176 1225 1275 1326

Table 1: Sizes of the 51 Blocks for Example 2

states (corresponding to a large number of active jobs) to the blocks with a small number of states

(corresponding to a small number of active jobs). Hence, the problem becomes trivial for the KMS

algorithm to solve since the blocks with a large number of states require only one GS iteration. Thus,

we find the performance of the KMS algorithm is very dependent on the solution to the Markov chain

if the solution results in blocks whose probability mass is significantly smaller than the tolerance used

for determining the stopping point of solving each block.

In figure 8 we plot the results assuming a population of 50 jobs. At a cpu to terminal rate of

0.001 most of the probability mass in the solution vector is in the last few blocks, hence KMS performs

significantly worse than ML. For higher rates the mass shifts to the blocks with a small number of states

and the performance of the KMS policies improves as in figure 6.

6 Conclusions

Our experimental evidence indicates that the ML algorithm is an efficient solver for NCD Markov chains.

The algorithm is also insensitive to the degree of decomposability and the size of the blocks in the chain

for the examples considered. These results strengthen the case that the ML algorithm is an efficient

general purpose solver.

Our results also indicate that for the problems we have considered, the ML algorithm is faster than

the KMS algorithm in its proposed form, i.e. using GS (Gaussian elimination) for solving blocks when

the number of states in the block is >_ 100 (<_ 100). We attribute the superior performance of the ML

algorithm to the fact that the ML algorithm is much faster than GS or Gaussian elimination for solving

large blocks.

At first it may seem surprising that the ML algorithm, not explicitly designed for NCD chains,

should work so well. They key to understanding the good performance of the ML algorithm is the

aggregation strategy. Since the algorithm aggregates strongly connected states together it has a similar

effect as the IAD algorithms. In fact, for some small examples of our generalized birth death chain we

have verified that the aggregated chain at some coarse level is the same chain found at the coarse level

of the KMS algorithm.

A secondary contribution of this work is the discovery that the solution speed of the KMS algorithm

(and we assume all traditional iterative aggregation/disaggregation algorithms) can be strongly affected

by the solution values of the Markov chain. Note that the ML algorithm is much less sensitive to the

solution values of the Markov chain.



The KMS algorithmis an attractivealgorithmsinceit easilyparallelizesand allowsthe efficient
solutionof problemsthat arelargerthanmemorywhenthe chainis NCD. Weconcludethereforethat if
KMSis to beused,the ML algorithmshouldbeusedto solvetheindividualblockssinceML is abetter
solverfor largeblocksthan GS,Gaussianelimination,or SOR.We plan to investigatethis mergerof
thetwo algorithmsin the nearfuture.
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